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Abstract

Landsat Thematic Mapper (TM) imagery was used to identify habitat
suitable for Oncomelania hupensis, the snail vector for schistosomiasis in the
Anning River Valley in Sichuan, China. The location of 55 snail habitat sites
and 48 non-habitat sites were determined by GPS measurements. Landsat TM
data were found to be quite variable for both snail and non-snail sites. Because
of this, supervised maximum likelihood classification produced poor accuracy.
It was hypothesized that the variability was due to the existence of multiple
microenvironments, each with distinct spectral properties and each suitable as
snail habitat. A two-tiered classification approach was developed in which an
unsupervised classification was first performed for the snail and non-snail
habitat data to generate five snail and five non-snail clusters. The signatures of
the 10 clusters were then used to perform maximum likelihood classification.
Using this approach, 90.3% of the snail habitat and 86.6% of the non-habitat
were correctly identified. These results suggest that remote sensing may be an
effective tool for identifying the habitat of the schistosomiasis vector in China.
If so, this provides a surveillance method for studying the area affected by the
new Three Gorges Dam, where profound ecological change will occur and
schistosomiasis is predicted to become a major problem.
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Introduction

The use of satellite imaging to remotely detect areas of high risk for transmission of in-
fectious disease is an appealing prospect for large-scale disease monitoring. The detec-
tion of large-scale environmental determinants of disease risk, often called landscape
epidemiology, has been motivated by several authors (1,2). The basic notion is that
large-scale factors such as population density, air temperature, hydrological conditions,
soil type, and vegetation can determine in a coarse fashion the local conditions con-
tributing to disease vector abundance and human contact with disease agents. These
large-scale factors can often be remotely detected by sensors or cameras mounted on
satellite or aircraft platforms and can thus be used in a predictive model to mark high-
risk areas of transmission and to target control or monitoring efforts. A review of satel-
lite technologies for this purpose was recently presented by Washino and Wood (3),
Hay (4), and Hay et al. (5).

In China, there is currently concern about the establishment and spread of infec-
tious diseases, including malaria and schistosomiasis, in the area along the Yangtze

331

* Edmund Y Seto, University of California-Berkeley, EHS, School of Public Health, 140 Warren Hall,
University of California, Berkeley, CA 94720 USA; (p) 510-649-8152; E-mail: edmund@sparky.berkeley.edu



upstream of the Three Gorges Dam, which is now under construction. Our group has
been working with parasitologists from the Sichuan Institute of Parasitic Disease (SIPD)
responsible for schistosomiasis monitoring and control in the area of the dam. The pro-
found ecological and social changes that will take place as the dam is being constructed
and after its completion may create new habitat for the snail species central to the
cycling of the disease, as well as new relationships between humans, domestic animals,
and the aquatic environment. The size of the lake that will be created behind the dam
and the difficulty of access to this mountainous area make remote sensing technology
an attractive adjunct to land-based surveillance of these changes as the lake fills and the
dam goes into operation.

To explore the possible use of remote sensing in schistosomiasis control prior to the
completion of the Three Gorges Dam, we have been studying a region where the dis-
ease is endemic, where ground-based data sets on disease prevalence and snail habitat
exist, and which is of a scale suitable for study using remote sensing. With the assis-
tance of our colleagues in the SIPD, we have focused on the area along the Anning River
in the Daliang mountainous area of southwestern Sichuan Province. This region
includes villages studied in our earlier work.

Remote sensing has been demonstrated to be a viable means of identifying habitat
for vectors of other diseases. The potential efficacy for using remote sensing to deter-
mine high-risk areas of malaria transmission was recently illustrated (6,7). Two types of
Anopheline mosquito habitat—unmanaged pastures and transitional swamps—were
shown to be detectable based on classification of Landsat Thematic Mapper (TM) data.
That research was an extension of previous work that focused on the identification of
high and low Anopheline-producing rice fields (8). Landsat TM data have also been
used to map land cover to study landscape correlates of Lyme disease (9). In that study,
disease data and landscape classifications were overlaid to look for land cover corre-
lates to disease risk.

Several studies have implied that remote sensing could be a useful tool for schisto-
somiasis monitoring. Cross and Bailey (10) and Cross et al. (11) showed a correlation
between local temperature variation and prevalence rate. Malone et al. (12) showed that
historical prevalence data correlated well with remotely detectable geographic features.
Both of these studies took a different approach from the Anopheline studies in that they
demonstrated a correlation between disease and ecological factors, whereas the malaria
vector studies by Beck et al. (6,7) and Wood et al. (8), use remote sensing to identify
habitat correlated with the presence of the disease vector.

In the current study, we ask if the second approach is applicable to detecting spatial
variations in the vector population that transmits the parasite causing schistosomiasis
japonicum, the Asian form of schistosomiasis. The disease vector, or, more appropri-
ately, the intermediate host for schistosomiasis japonicum, is an amphibious snail,
Oncomelania hupensis. A recent preliminary study by the SIPD used Advanced Very
High Resolution Radiometer (AVHRR) data to identify snail habitat (13). In the current
analysis we use higher resolution Landsat TM data to look for correlations with
detailed ground-based snail ecology surveys. If surveyed snail habitats correlate with
the satellite data, there is the potential to use remote sensing to monitor large and re-
mote areas in the region of the dam, and to identify areas at high risk of transmission.

The current problem is different from that of detecting malaria vectors. The vector
habitat for O. hupensis is usually a microenvironment that is itself not detectable using

332 GEOGRAPHIC INFORMATION SYSTEMS IN PUBLIC HEALTH, THIRD NATIONAL CONFERENCE



most remote sensing data because of their coarse spatial resolution. However, microen-
vironmental conditions may be affected by larger-scale factors including local vegeta-
tion type and surrounding crops, fertilizer usage, and water and temperature patterns.
These factors will cause local changes in the environment, which in turn will influence
the remote sensing signal. Further, the other two schistosomiasis studies found correla-
tions between large-scale phenomena and disease rates, implying that something can
be seen at this scale. The question addressed at present is whether remote sensing data
of local areas can be accurately classified, based on large-scale environmental factors, so
as to identify habitats that are suitable for these vector snails, and thus at high risk for
transmission.

Methods

To address this issue, our group conducted a study in the Anning River Valley in south-
western Sichuan Province. The Anning River Valley is a high mountain valley at an
elevation of about 1,500 meters (m). This is primarily an agricultural area with irrigated
farming of rice, corn, wheat, a variety of vegetables, and some export crops. The valley
is also a highly endemic area for schistosomiasis japonica. The remote sensing data
used were from the Landsat TM sensor. The ground data indicating suitable snail habi-
tat were point observations from one environment type and were classified as habitat
or non-habitat. Suitability was determined by the presence or absence of young or re-
producing snails. Few locations are found with only adult snails present, presumably
because snails leave unsuitable locations or die.

A large-scale snail monitoring effort was conducted in 1994 by the Xichang County
Anti-Endemic Station (XCAS). The station is responsible for monitoring and controlling
human schistosomiasis infection and vector snail ecology in the 17-township middle
section of the Anning River Valley. Snail surveys were performed throughout the area
in townships where the human incidence exceeded 10%. Snail surveillance was done in
June. We chose this section of the river valley as our study area to take advantage of
these existing surveillance data. The study area extends from Lizhou Township in the
north to Hexi Township in the south, and covers about 45 km of the river valley around
Xichang City. A map of the area showing these reference points is shown in Figure 1.

Two Landsat TM scenes (one spring, April 7, 1994, and one fall, October 16, 1994)
were obtained for the region. Both images were free of cloud cover over the area of
interest, and each represents a distinct agricultural season. The major crops during
these times are rice and corn in summer-fall and wheat and beans in the winter-spring
season.

Ground data on the locations of snail colonies were obtained from the XCAS’s 1994
snail surveys (this is being supplemented with density information). For 10 days in the
middle of June 1997, our group, with the help of the local authorities and the head of
the XCAS, visited townships and recorded the geographic locations of the 1994 sur-
veillance data. Collection sites were located with a Trimble Pro XL global positioning
system (GPS) to allow for correlation with the remote sensing data. Three base stations
were established and positioned with respect to a known surveyed control point at the
peak of the Lushan mountain southeast of Xichang City. All data points were differen-
tially corrected to the base station locations to provide positioning accuracy in the 1 to
5 m range.
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Collection sites were located in 14 townships throughout the study area. Townships
were chosen based on availability of 1994 data or if there was historical knowledge of
apparently stable snail habitat or non-habitat. Three environment types exist in the
study area: irrigated farming in the river plain, terraced rice culture at the base of
the hills, and mountain stream areas higher in the mountains. The three habitat types
are structurally different with distinct local ecologies. In light of this, the study was lim-
ited to one type of environment, irrigated farming areas in the river plain, for which
there was an abundance of ground/field data (and travel was more convenient). Snail
habitat in the river plain area is limited to irrigation and drainage ditches and the
boundaries of fields. This resulted in a total of 103 data points (55 classified as habitat
and 48 as non-habitat).

Image processing was performed using PCIWORKS image processing software.
Before data analysis, the images were geometrically corrected and registered using 11
ground control points taken throughout the river valley. Points used for referencing the
image to a world coordinate system were large structures easily seen on the image, such
as the corners of the Xichang airport runway, large intersections, and an isolated paved
village compound. The 103 ground/field data points were located on the image. Each
snail habitat and non-habitat site was specified as a 3- by 3-pixel area surrounding the
site location as determined in the field by GPS measurements.

After geographic correction, a preliminary supervised maximum likelihood classi-
fication was performed using all TM channels from both dates. The 55 habitat and 48
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Figure 1 Map of the Anning River Valley study area. Points represent snail habitat and non-
habitat sites distributed in the valley from Lizhou Township in the north to Hexi Township in 
the south.



non-habitat areas were used both to train the classification algorithm and assess the
accuracy of the classification. The results of this accuracy assessment are presented in
the next section.

Realizing that the accuracy of our preliminary classification was inadequate, we
next employed a two-tiered analysis approach. The first step of this approach employed
an unsupervised classification method called Isodata clustering to break up snail habi-
tat and non-habitat classes into subclasses. The Isodata algorithm is an iterative process
whereby the pixels of the image are grouped into clusters based on an examination of
their multispectral brightness values. Pixels grouped into the same cluster have similar
spectral properties. The Isodata algorithm was first applied to those pixels correspon-
ding to snail habitat sites. The algorithm was used to categorize the pixels into five sep-
arate clusters. These five snail habitat clusters may correspond to different
microhabitats that are all suitable for snails. The Isodata algorithm was then run using
the non-habitat sites to produce five non-habitat clusters. The spectral distributions for
each of these 10 clusters were determined and used to perform the second part (i.e., the
supervised maximum likelihood classification) of this two-tiered analysis.

Results

The results of the preliminary supervised classification using all TM bands from the
spring and fall images are presented in Table 1. For the 55 snail habitat sites, there was
good classification accuracy, with 89.3% of the pixels being classified correctly.
However, for the non-habitat sites there were many misclassified pixels, with only
52.3% of the pixels being accurately classified as non-habitat. Among unclassified
pixels, 3.4% of them corresponded to snail habitat sites and 8.8% of them corresponded
to non-habitat sites.

Table 2 shows the result of the two-tiered classification. For the pixels correspon-
ding to the 55 snail habitat sites, 3.6% were unclassified. Of the remaining 96.4%, 90.3%
of the pixels were correctly classified as snail habitat. For the pixels corresponding to
the 48 non-habitat sites, 4.2% were unclassified. Of the remaining 95.8%, 86.6% of the
pixels were correctly classified as non-habitat. Table 3 presents a classification matrix
showing the percentages of each cluster for both types of habitat.

The resulting classification for the Anning Valley is shown in Figure 2. A 5- by 5-
pixel mode filter was applied to the image for presentation. The mode filter is prima-
rily used to clean up thematic maps for presentation purposes by grouping together
areas that are predominantly snail habitat or non-habitat. More specifically, for each 5-
by 5-pixel area, the predominant class is assigned to all pixels in the area.
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Table 1 Results of Preliminary Maximum Likelihood Classification of Snail Habitat and Non-
Habitat Sites

Total # % Unclassified % Classified as % Classified
Pixels Pixels Snail Habitat as Non-Habitat

48 Non-habitat sites 432 8.8 38.9 52.3

55 Snail habitat sites 495 3.4 89.3 7.3
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Table 2 Results of Two-Tiered Analysis Using Isodata and Maximum Likelihood Classification
Algorithms

% % %
Total # Unclassified Classified within Classified within 
Pixels Pixels Snail Habitat Clusters Non-Habitat Clusters

48 Non-habitat sites 432 4.2 12.6 83

55 Snail habitat sites 495 3.6 87.1 9.2

Table 3 Percentage of Pixels Classified by Cluster for Snail Habitat and Non-Habitat Sites

Snail Habitat Clusters Non-Habitat Clusters

%
Unclass-

Total # ified % % % % % % % % % %
Pixels Pixels c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

48 Non-habitat sites 432 4.2 6.9 3.7 0.2 1.6 0.2 28.9 9.0 18.3 11.8 15.0

55 Snail habitat sites 495 3.6 31.3 23.6 8.5 17.6 6.1 4.8 0.0 4.0 0.0 0.4

Figure 2 Three panels showing (from left) (a) Landsat TM of Anning river valley, (b) classifica-
tion of habitat using Isodata and maximum likelihood algorithms; (c) enlargement of valley floor
showing mixed habitat.



Discussion

Despite the fact that we limited our analysis to only those sites that were in the irrigated
farming areas located in the river plain, there was a great deal of variability within the
snail habitat and non-habitat sites. This was observed visually in the field as well as in
the distributions of the spectral data. Our preliminary classifications ignored this vari-
ability by lumping all of the habitat sites together and all of the non-habitat sites
together to train the classification. As a result, the snail habitat class included many of
the non-snail sites, while the non-habitat class did not classify enough of the non-snail
sites. This poor classification may be due to the existence within the irrigated farming
environment of multiple microenvironments/habitats that each have distinct spectral
properties. Hence, the terms “snail habitat” and “non-habitat” encompass distinctly
different microenvironments that support or do not support snails, respectively.
Therefore, when either snail habitat or non-habitat is considered as a whole, it appears
to be quite variable.

In the two-tiered approach, we solved the problem of multiple microenvironments
by using the Isodata algorithm to effectively separate the highly variable habitats into
relatively ‘pure,’ less variable clusters before performing supervised classification. This
was not based on field observation; rather, the spectral data were used to create these
clusters. The choice to create five habitat clusters and five non-habitat clusters is not
explained in detail because these numbers were chosen somewhat arbitrarily. The high
classification accuracy, however, indicates that such numbers are not unreasonable. It
will not be hard to fine-tune the number of clusters by looking at the variability and
separability between signatures.

In addition to refining the number of clusters, we are also working on reducing the
number of bands used to include only those that add information to the classification.
Once we have reduced the classification down to the key bands, we hope to develop an
understanding of what the clusters correspond to in the field.

Future Work

Although our results thus far are quite promising, we acknowledge that they are still
very much preliminary in nature. There is considerable work to be done before the
methods described here can be applied to the field in the form of disease surveillance.
One of our first aims is to develop a better sense of the accuracy—and, thus, limita-
tions—of remote sensing classifications applied to schistosomiasis.

In our current work we assessed the accuracy of the classification only at the loca-
tions of the training sites. Using the same data for the training and validation of the
classification may have resulted in artificially high accuracies. We plan to revisit the
Anning River Valley to validate our two-tiered analysis with a rigorous field study. For
this field study we first intend to obtain spring and fall Landsat TM images from a more
recent year than 1994 to repeat the two-tiered classification. This more recent classifica-
tion would then be validated in the field. We intend to sample pixels from this more
recent classification and visit the corresponding locations in the field. True snail status
would be assessed for each location and a better assessment of classification accuracy
would be produced.

Another study we plan to conduct will assess the degree to which additional
ground data might improve the classification accuracy. According to SIPD (14), the
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ecological correlates of O. hupensis snail habitat in Sichuan include the existence of cer-
tain vegetation types; size and density of irrigation ditches; proximity of agricultural
field edges; wet lowland areas; soil moisture, type and quality; and, local temperature.
In addition, it is our hypothesis that to some degree the chemical properties of the soil
and water condition the existence of snails at a particular site. Some information, such
as temperature, soil type, and vegetation type and coverage are available at a coarse
scale for the Anning Valley, while other data, particularly the soil and water chemistry
data, will have to be measured in the field during our randomized field validation
study.

Several issues will have to be addressed when dealing with such multivariate data
that are measured on several different scales and with varying reliabilities. For exam-
ple, soil type data is a nominal variable and percent vegetation coverage, a bounded, in-
terval variable. Because traditional remote sensing image analysis algorithms such as
the maximum likelihood classifier cannot be used to process nominal and ordinal data,
we will analyze these additional ground data using several non-traditional techniques:
CART (15), logit regression (16), evidential reasoning (17,18), and artificial neural algo-
rithms (19). Each of these algorithms can handle all the different levels of measurements
and have proven useful in classification tasks where similar issues existed.

These multivariate approaches can be used to develop a classification for snail habi-
tat based on ecology. The accuracy of this ecological classification can be compared with
that of our remote sensing classification algorithm to gauge the added importance of in-
corporating ground ecology measurements in our classification of snail habitat.
Furthermore, the ecological classification will help in developing an ecological inter-
pretation of the remote sensing classification algorithm, which is central to being able
to extrapolate the use of the algorithm to different areas and to different snail sub-
species. Of particular interest is the determination of whether the distinct habitat clus-
ters identified in our remote sensing classification correspond to distinct ecological
conditions in our ecological classification, and later, how both the remote sensing and
ecological classifications change between different schistosomiasis-prevalent regions
in China.

The work described thus far has focused on locating snail habitat. Although the
existence of snails is a necessary criterion for disease transmission, it does not serve as
an accurate indication of disease prevalence since, within areas where snails exist, the
extent of human and animal infection vary considerably. Moreover, in some locations
where snails exist, no disease transmission occurs at all. It is clear, however, that on a
local scale, infection intensity and disease prevalence are related to the relationships
between people, animals, and snails, as they may be mediated by landscape features.
Alongside our remote sensing work, we have been working with mathematical models
as a way to better understand such site-specific factors at the local level and their
impact on the dynamics of disease transmission.

From a remote sensing standpoint, however, many of the landscape features that
are related to infection intensity—including the nature and density of irrigation in vil-
lages, and the proximity and density of settlements—can be identified and quantified
using remote sensing technologies. In addition, topographical features such as slope
and aspect determine the flow of water channels, which may influence the transmission
of disease. Therefore, it is of considerable interest to determine if topographical or land-
scape features that can be determined remotely are correlates of transmission. Such
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information would further inform remote surveillance programs for prioritizing loca-
tions within the Three Gorges region for intensive ground investigation. To investigate
these questions, higher resolution images than those from Landsat TM would be nec-
essary. A future study will look at aerial photographs and/or higher resolution satellite
images, such as those from SPOT HRV-PAN and IRA-1D, which are available now, and
from Space Imaging and Earth Watch, which might become available soon.
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